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ABSTRACT 

This paper considers an automatic target recognition (ATR) application in which a targeting sensor is 
used to guide a seeker-equipped weapon to an area containing high-value relocatable targets. The 
weapon seeker then needs to engage the high value targets, while minimising collateral damage.  A 
Bayesian approach is proposed that enables the weapon seeker to exploit the targeting information before 
making its final decision.  Specifically, the approach matches the scenes in the seeker domain with those 
from the targeting sensor, while taking into account uncertainty and data latency. The proposed solution 
utilises a Bayesian technique known as particle filtering.  This paper outlines the approach, and presents 
results for a synthetic example. Future work will conduct a performance assessment using scenarios 
derived from real long-range and short-range SAR imagery. 

1.0 INTRODUCTION 

1.1 General 
This paper considers the problem of using a targeting sensor to guide a seeker-equipped weapon to an area 
containing high-value relocatable targets.  The aim is for the seeker-equipped autonomous weapon to 
exploit targeting information before making its final decision.  This is illustrated in Figure 1, where 
targeting data at time 0t  is used to aid classification of the weapon seeker data at time 1t . The generic 
problem addressed is one where two sensor images, separated in time, are available to classify relocatable 
targets in a scene.  Issues to be addressed include: 

• Uncertainty in the targeting identifications. 

• Change in the target layout configuration during weapon fly-out (i.e. staleness of the targeting 
information).  

• Differing imaging geometry between the targeting sensor and the seeker. 

A particularly adverse effect of the last two items is that a target designated correctly by the targeting 
sensor may have both a different location and an altered signature by the time that the weapon has reached 
the targeted area.  This will have a significant effect on the ability of the weapon to engage the pre-
selected target, especially in typical scenarios where collateral damage must be minimised. 

Paper presented at the RTO SET Symposium on “Target Identification and Recognition Using RF Systems”,
held in Oslo, Norway, 11-13 October 2004, and published in RTO-MP-SET-080. 

  

RTO-MP-SET-080 P5 - 1 



 

Figure 1: Exploitation of targeting information by a weapon seeker. 

1.2 Bayesian approach 
A Bayesian approach is proposed which uses a Particle Filter [4] to draw samples from the posterior 
distribution for the target locations and classes, given the information derived from the targeting sensor 
and weapon seeker.  Since the posterior distribution contains the relevant information on the target 
locations and classes, the samples can be used as inputs to the final decision making process of the 
weapon. Successful production of this information will improve the ability of the weapon to engage the 
targets designated on launch of the weapon, while minimising collateral damage. The proposed approach 
fits within a larger framework detailed in an accompanying paper [17]. 

1.3 Bayesian approach  
The main motivation behind a Bayesian approach [11] to the problem lies in the unique ability of Bayesian 
statistics to handle limited and possibly conflicting pieces of information in a fully consistent manner. In 
particular, Bayesian statistics provides a consistent mechanism for manipulating probabilities assigned to 
observed data.  Further advantages to the use of Bayesian techniques include the ability to cope with 
additional prior information, perhaps elicited from expert knowledge, and the production of confidence 
intervals and other statistics for the parameters estimated. 

1.4 Outline of the paper  
The structure of this paper is as follows. Section 2 specifies the problem being examined.  Section 3 
proposes a Bayesian solution. Section 4 presents the results for a synthetic example. Conclusions and 
future work are given in Section 5. 

2.0 PROBLEM SPECIFICATION 

2.1 Introduction 
In the considered scenario, an image from a targeting sensor is obtained at time 0t .  Target detection 
techniques are then applied to obtain a set of targeting detections.  An image chip is obtained for each 
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detected object/target by centring an input window (of sufficient size to cover expected targets) at the 
location of each detection. ATR algorithms [16] are then applied to estimate the class of the object leading 
to each detection.  If the target classes correspond to high value targets a seeker-equipped weapon is 
launched to engage the targets. 

The weapon seeker reaches and images the highlighted area at a later time, 1t .  Similarly to the targeting 
sensor processing, target detection algorithms are then applied to obtain a set of seeker detections, along 
with associated image chips (centered on the locations of the detections). The task is to determine the 
locations and classes of the targets at time 1t , utilising both the seeker information and the targeting 
information.  The solution to this task lies in determining the posterior distribution of the locations and 
classes at time 1t . For the purposes of this paper it is assumed that we are only interested in the targets 
detected in the targeting image. 

2.2 Related work 
Work by Gordon and Salmond [8] tackles the problem of matching target detections from a targeting 
sensor with a missile seeker, but assumes that no ID information can be inferred from the seeker or 
targeting measurements. Gaussian models for bulk and individual target motion during weapon fly-out 
were introduced, and a closed form solution was obtained.  Work by the same authors on group and 
extended object tracking [13] hints at a non-linear approach to the same problem using particle filters [4], 
but does not take into account object characteristics.  

The work described in this paper differs from previous approaches to matching target detections through:  

• Estimation of full class probabilities, utilising the targeting and seeker sensor measurements of the 
objects/targets. 

• Potential for modelling complicated target motion during the time-gap between the seeker 
measurements and the targeting measurements. 

• No assumption that a target is correctly designated in the targeting image. 

Work by Gordon et al [6] has developed a Bayesian approach to joint tracking and identification, which is 
relevant to the problem addressed within this paper.  The focus within that work was ensuring efficiency 
for multiple sensor returns. 

2.3 Targeting detections  

The number of targeting sensor detections at time 0t  is denoted by tN .  The locations of the detections 
and associated image chips (ID sensor measurements) are denoted by 

tNll ,,1 K  and 
tNrr ,,1 K  

respectively.  For notational ease we define ),( iii rlT =  for tNi ,,1 K= . 

Assuming that there are J  possible target classes, the ID sensor measurements are used to obtain J -
dimensional class probability vectors iψ  for each detection, where ji ,ψ  is the estimated probability that 
the i -th detection is the j -th class, for tNi ,,1 K=  and Jj ,,1 K= .  Such class probabilities would be 
estimated using Bayesian ATR algorithms, or possibly via human intervention. 

The measurement errors for the target locations are assigned Gaussian distributions, so that ),(~ txNl Σ  
where x  is the actual target location, and tΣ  is the covariance matrix for the measurement errors.  The 
covariance matrix should be determined by considering the sensor performance characteristics along with 
the imaging conditions. 
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2.4 Seeker detections  
The number of seeker detections at time 1t  is denoted by sN .  Since the targeting sensor indicates that 
there are tN  targets present, the threshold for detecting objects within the seeker image is assumed to be 
set so that ts NN ≥ . Adaptation of the proposed approach to cope with ts NN <  would be trivial. The 
locations of these seeker detections are denoted 

sNyy ,,1 K , and the associated image chips (ID sensor 
measurements) are 

sNzz ,,1 K . For notational ease we define ),( iii zyD =  for sNi ,,1K= . 

An example of a DBS seeker image is provided in Figure 2. Input windows have been placed on the 
locations of an example set of seeker detections. The windows are colour-coded so that red indicates an 
actual target and green indicates the type of background clutter that might pass through the initial target 
detection stage. These input windows define the image chips that are extracted to provide ID sensor 
measurements.  

 

Figure 2: Example of a DBS seeker image (range along the horizontal axis, cross range along the 
vertical axis).  Red boxes highlight targets, green boxes highlight background clutter. 

It is assumed that density models (conditional on class) can be estimated for the ID sensor measurements. 
Estimating these distributions given only limited training data for the weapon seeker is covered in the 
accompanying paper [17]. These distributions can be represented by )|( jCzp = , where z  is the image 
chip and j  is the index of the class C  of the object.  

In addition to probability densities for target image chips, it is assumed that a probability density has been 
estimated for image chips that correspond to the sort of background noise and clutter that will pass through 
the target detection algorithm. This density is denoted by )0|( =Czp . 

If the class of a target is unassigned, a mixture distribution is used for the ID sensor measurements: 
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where Jππ ,,1 K  represent the prior class probabilities excluding background clutter, and 0π  is the prior 
probability for background clutter.  Note that the prior probability for background clutter will be related to 
the false alarm probability of the detection algorithm, rather than the ratio of background clutter to targets.  
This reflects the fact that the initial detection stage will already have eliminated most of the background 
noise. 

The measurement errors for the object locations are assigned Gaussian distributions, so that ),(~ sxNy Σ  
where x  is the actual object location, and sΣ  is the covariance matrix for the measurement errors.  As 
with the targeting sensor, the covariance matrix should be determined by considering the sensor 
performance characteristics together with the imaging conditions. Locations of any additional targets and 
background clutter are assumed to be distributed uniformly over the surveyed region. 

3.0 BAYESIAN SOLUTION 

3.1 Posterior distribution  
The actual classes and locations of the targets detected by the targeting sensor at time 0t  are denoted by 

),,( 1 tNcc K  and ),,( ,01,0 tNxx K  respectively.  By time 1t  the new locations are represented by 
),,( ,11,1 tNxx K .  This reflects the fact that the targets may have relocated during the weapon fly-out time 

01 tt − . The actual classes are of course unchanged. Using the definitions in Section 2 the posterior 
distribution of interest at time 1t  is: 

),,,,,|,,,,,( 111,11,1 sttt NNNN DDTTccxxp KKKK   (2) 

3.2 Prior Evolver 
A Prior Evolver is used to update the information from the targeting sensor to allow for target motion 
during weapon fly-out. Specifically, this consists of predicting how the detections gleaned from the 
targeting sensor at time 0t  will have changed by the time 1t  that the weapon seeker views the targeted 
area. The Prior Evolver can be represented by a distribution: 

),,,,,|,,( 1,01,0,11,1 ttt NNN ccxxxxp KKK   (3) 

In the tracking literature [2] the Prior Evolver corresponds to the system model for the state.  

The simplest non-trivial form for the Prior Evolver consists of independent Gaussian perturbations for 
each detection. Bulk motion of targets (perhaps reflecting the motion of a convoy) can be included easily, 
using a global Gaussian translation [7]. More complicated motion, incorporating knowledge of the terrain 
and likely target behaviour, is also possible. For example, targets can be predicted to follow a road 
network [1][10]. This is done by perturbing the locations using a Gaussian distribution with covariance 
matrix chosen so that the variance along the road is much higher than the variance orthogonal to the road. 
This has the effect of making the uncertainty along the road more than the uncertainty orthogonal to the 
road, which fits with the road motion constraints. Various rules can then be applied for targets near road 
junctions and for entry/exit conditions from roads. A further possibility is the construction of a potential-

Bayesian Approach to Exploiting prior  
Targeting Information within a Weapon Seeker 

RTO-MP-SET-080 P5 - 5 



field constraint, to bias predicted target motion in the direction of assumed desired target locations (such 
as potential hide locations) and away from impenetrable terrain (such as rivers). The tracking literature 
[12][15] contains examples of such an approach. 

3.3 Particle Filter 
Analytical calculation of the desired posterior distribution is feasible only for the simplest of measurement 
distributions and Prior Evolver. Thus, a Particle Filter is used to obtain the samples from the posterior 
distribution. The particle filter is an extension of importance sampling [5][14] to sequential sampling. For 
clarity, we now (briefly) describe the underlying idea behind importance sampling.  

Suppose that we have a set of n  independent samples, )()1( ,, nφφ K , from a probability distribution with 
density function proportional to )(φg , but we are actually interested in making inference on a probability 
distribution with density function proportional to )(φf . If a set of unnormalised importance weights:  

)(/)( )()()( sss gfw φφ= ,   (4) 

is defined, the expectation of a function )(φa  with respect to the distribution defined by )(φf  can be 
estimated by:  

∑∑
==

=
n

s

s
n

s

ss
f wawa

1

)(

1

)()( )(φ .  (5) 

Consider now, the special case where the distribution defined by )(φf  is the posterior distribution for a 
likelihood function )|( φxl  and prior distribution )(φπ , while the distribution defined by )(φg  is the prior 
distribution )(φπ . Then, the importance weights defined in (4) become:  

)|( )()( ss xlw φ= .  (6) 

Thus, we have a mechanism for making inference on a posterior distribution by sampling from the prior, 
and weighting the samples by the likelihood function. This forms the basis for the particle filter solution to 
our problem. For fuller details of particle filters the reader is referred to the book by Doucet et al [4].  

3.4 Application of the Particle Filter 

Initialisation of the filter requires a set of  pN  equally weighted particles )),(,),,(( )()(
,0

)(
1

)(
1,0

s
N

s
N

ss
tt

cxcx K  from 
the joint posterior distribution for the classes and locations at time 0t . The locations at time 0t  can be 
sampled according to the distribution for the targeting sensor measurement errors. Using definitions from 
Section 2.3 we set ),(~,0 tii lNx Σ , for tNi ,,1K= . The initial class samples for each detection are drawn 
probabilistically according to the class probability vectors iψ .  

The Particle Filter algorithm works by passing samples through the Prior Evolver (defined in Section 3.2). 
Specifically, for pNs ,,1K=  we:  

• Sample },,{ )(
,1

)(
1,1

s
N

s
t

xx K  from ),,,,,|,,( )()(
1

)(
,0

)(
1,0,11,1

s
N

ss
N

s
N ttt

ccxxxxp KKK , the Prior Evolver 
distribution (defined in Section 3.2). 
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• Evaluate the importance weights ),,,,,|,,( )()(
1

)(
,1

)(
1,11

)( s
N

ss
N

s
N

s
tts

ccxxDDpw KKK=  using the 
measurement likelihoods to be defined in Section 3.5.  

The weighted samples )),(,),,(( )()(
,1

)(
1

)(
1,1

s
N

s
N

ss
tt

cxcx K  (with weights )(sw ) can then be used to approximate the 
required posterior distribution.  

If the scenario were to be extended to a full tracking problem in which a time series of seeker images is 
obtained, this procedure would need to be altered to prevent degenerate weights (i.e. a few particles with 
very large weights, and the rest with small weights) [6].  

3.5 Likelihood 

Before the likelihood of the seeker measurements can be calculated, the images from the seeker and 
targeting sensors need to be registered. Various techniques for image registration could be used [3], such 
as those that extract and then match lines in the images [18]. In the example presented in this chapter the 
registration (and the uncertainty in this registration) is incorporated into the Prior Evolver.  

Evaluation of the likelihood function is complicated by the need to associate the seeker 
measurements/detections with the targets. This association requires definition of the set of feasible 
association hypotheses θ . Each hypothesis associates a subset dθ  of seeker measurements with the 
detections from the targeting sensor. The cardinality of dθ  is denoted 

dNθ , and for each di θ∈  we define 

iλ  to be the target (from the targeting sensor) to which that measurement is assigned. The remaining 

da NsN N θθ −=  seeker measurements (defined by the indices di θ∉ ) are taken to correspond to additional 
targets or clutter measurements. Using the association hypotheses, the likelihood function can be 
expressed as:  

)},,,,,|(

),,,,,,|,,({),,,,,|,,(

1,11,1

1,11,111,11,11

tt

ttstts

NN

NNNNNN

ccxxp

ccxxDDpccxxDDp

KK

KKKKKK

θ

θ
θ

×

= ∑
  (7) 

Assuming independence between measurements/detections, the likelihood conditioned on the association 
hypothesis is given by:  









×







= ∏∏

∉∈ dd

iitts
i

ii
i

iiNNN zypcxzypccxxDDp
θθ

λλθ ),(),|,(),,,,,,|,,( ,11,11,11 KKK   (8) 

where using notation defined in Section 2.4:  

)(),(

)|(),|(),|,(
1

,1,1

isii

iisiii

zpAzyp

cCzpxyNcxzyp
iiii

−=

=Σ= λλλλ   (9) 

where sA  is the area of the surveyed region.  

Following Gordon et al [7], the prior probabilities for the association hypotheses are expressed as: 
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The first term of equation (10) models the number of additional target or clutter detections in the 
processed seeker image by a Poisson distribution with mean sAρ . Here, additional target refers to a target 
that was not detected by the targeting sensor, but which is never-the-less a proper target. A clutter 
detection corresponds to an object that does not belong to any of the J  specific target classes.  The second 
term of equation (10) is a Binomial distribution ),;(Bin dtN pN

d
θ  for the number of detected targets 

dNθ .   
Specifically, each target from the targeting sensor is assumed to be detected in the seeker image with 
independent probability dp  (more complicated models would alter dp  according to the class of the 
target). Given 

dNθ , it is assumed that the allowable associations between targets and seeker measurements 
are equally likely.  This produces the third term of equation (10).  Allowable associations given 

dNθ  are 
obtained by selecting the 

dNθ  detected targets (the number of such subsets is )!)!/((!
dd NNtt NN θθ− ), and 

then assigning these targets to the seeker measurements (the number of possible assignments for each 
subset is !/!

aNsN θ ).   

In practical use, many of the association hypotheses will contribute only a negligible amount to the 
likelihood in (10), and can therefore be removed by a gating procedure based on thresholds for the class 
probabilities and location measurement errors. The gating procedure works by examining the associations 
between seeker measurements and Prior Evolver predictions. The procedure is best illustrated with an 
example. Suppose that it is proposed to associate a Prior Evolver prediction with class jC =  and location 
x  with a seeker detection with location y  and image chip z . A gating based on the class probabilities is 
obtained by comparing the posterior class probability based upon the seeker image chip:  

∑ =
=

=
== J

j j

j

jCzp

jCzp
zjCp

1' ' )'|(

)|(
)|(

π

π
  (11) 

with a pre-specified threshold. If the probability falls below the threshold then the association is rejected. 
A gating based upon the location can be obtained by using the seeker location measurement error 
distribution to set a threshold on the allowable distance between x  and y .  

3.6 Use of the particles 
Numerous quantities of interest can be determined using the particles. These include such quantities as the 
class probabilities, mean target locations and the most likely association hypotheses for each of the seeker 
detections. The most likely association hypotheses would be relevant if a specific target is designated in 
the targeting data as being of interest. The most likely association hypothesis would then indicate which 
object detected by the seeker is most likely to correspond to the designated target. In this paper we 
concentrate on the target classes and locations.  

The posterior probability that the i -th targeting detection is an object of class j  is approximated by: 

∑
=

=∝=
p

ts

N

s

s
i

s
NNi jcIwTTDDjCp

1

)()(
11 )(),,,,,|( KK  ,  (12) 

where I  is the indicator function (so 1)( == yxI  if yx =  and 0  otherwise). The mean locations of the 
targets at time 1t  can be approximated by: 
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for tNi ,,1K= . Note, however, that estimation of the target locations by the mean of the location posterior 
distribution might not be appropriate. If the target locations have multi-modal distributions then the mean 
values might be away from the actual target locations. Ideally, we would examine the full distribution of 
possible target locations.  

4.0 SYNTHETIC EXAMPLE 

4.1 Description 
The performance of the approach is illustrated with a synthetic example, in which there are three classes of 
target. Detections in a subset of the x-y plane, along with corresponding image chips were generated 
randomly to represent the targeting information after application of initial target detection algorithms. The 
number of targets detected was sampled from a Poisson distribution with restricted range:  

)52()4(Poisson~ ≤≤× tt NIN   (14) 

The targeting sensor detections were restricted to the region }0.10.0 ,0.10.0{ <<<< yx . The covariance 
matrix of the Gaussian targeting sensor measurement error was given by:  









=Σ

2

2

025.00.0
0.0025.0

t    (15) 

Thus the standard deviation of the targeting sensor measurement error was 0.025 along each axis. For the 
purposes of the documented experiments all targeting detections belonged to the set of three classes (i.e. 
there were no clutter objects in the targeting detections).  

For demonstration purposes, the image chips were replaced by samples from 2-dimensional Gaussian 
distributions, whose parameters depended on the class of the target. These ID measurements could 
correspond to length and width, for example.  Denoting the mean measurement vectors for class 1, 2 and 3 
by 1µ , 2µ  and 3µ  respectively, and the corresponding covariance matrices by 1Σ , 2Σ , 3Σ  we used: 









=Σ








−

−
=Σ








=Σ








=








=








=

41.005.0
05.027.0

 ,
30.002.0
02.026.0

 ,
43.007.0
07.043.0

 ,
0.2
1.1

 ,
9.0
0.2

 ,
0.1
0.1

321321 µµµ  (16) 

The mean vector clutterµ  and covariance matrix clutterΣ  for the clutter class were: 









=Σ








=

0.40.0
0.00.4

   ,
5.0
5.0

clutterclutterµ   (17) 

These measurement distributions were selected to have considerable overlap between the classes. Thus, 
there will be a non-trivial error rate if classification is attempted using just a single image chip 
measurement.  
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Target relocation during weapon fly-out was simulated via a global Gaussian shift of the targets, followed 
by independent local Gaussian perturbations. Specifically, a global shift of ),( globalglobalN Σµ  was applied 

equally to each target position, followed by an independent perturbation of ),( locallocalN Σµ . The 
parameters were given by:  









=Σ








=








=Σ








=

2

2

2

2

05.00.0
0.005.0

   ,
0.0
0.0

 ,
2.00.0
0.02.0

   ,
0.0
0.0

locallocalglobalglobal µµ   (18) 

To simulate the seeker detections, the relocated targets have been detected with independent probabilities 
8.0=dp . Additionally, extra detections in line with a restricted Poisson distribution have been generated. 

Specifically, extra detections have been generated according to a Poisson distribution with mean 2=ρ  
but subject to 7≤≤ st NN . The extra detections were restricted to the region }0.10.0 ,0.10.0{ <<<< yx , 
and were equally likely to be from any of the target classes and the background clutter class. The 
covariance matrix for the Gaussian seeker measurement error was set to:  









=Σ

2

2

025.00.0
0.0025.0

s    (19) 

Thus the standard deviation of the seeker measurement error was 0.025 along each axis.  

The image chips for the seeker detections were simulated by sampling from 2-dimensional class-
conditional Gaussian measurement distributions. The same Gaussian measurement distributions as for the 
targeting sensor have been used. Although having the same measurement distributions for the targeting 
sensor and seeker may appear unrealistic, it does not bias the results, because the actual ID measurements 
are not compared within the Bayesian combination algorithm. Instead, only the likelihood values are 
combined, via Bayes’ theorem.  

The Prior Evolver was set to be a global Gaussian perturbation ),( PE
global

PE
globalN Σµ , followed by independent 

local perturbations ),( PE
local

PE
localN Σµ . If the image chips are ignored, such a specification allows analytical 

calculations to be made, using Kalman Filters [7]. It is likely that alterations could be made so that the 
Kalman Filter could be used for the full problem. However to keep the approach generic (i.e. applicable to 
more complicated Prior Evolvers) the full particle filter was used. The parameters used were: 

,
075.0.00.0
0.0075.0

 ,
0.0
0.0

 ,
22.00.0

0.022.0
 ,

0.0
0.0

2

2

2

2









=Σ








=








=Σ








= PE

local
PE
local

PE
global

PE
global µµ  (20) 

Note that the standard deviations of the Gaussian perturbations have been set to be slightly larger than 
those used to generate the synthetic data, to simulate uncertainty in our knowledge about target relocation. 
Furthermore, note that the relatively unrestricted target motion is actually making the problem harder, 
since the lack of constraints means that more particles are needed to ensure that all the possible target 
behaviour is accounted for.  

Within the particle filter algorithm, the parameters of the location and sensor measurement distributions 
were all set to the same values used to generate the synthetic data. Similarly, the seeker detection 
probabilities 8.0=dp  and the mean 2=ρ  of the Poisson distribution for extra target detections in the 
seeker image (ignoring the restriction on the number of seeker detections) were all set to the same values 
used to generate the synthetic data. In real use this would not be possible, and these parameters would 
need to be estimated, or assigned using expert knowledge. 
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4.2 Monte Carlo assessment  
A Monte Carlo assessment of performance has been conducted. The presented results are based on 200 
random simulations, each using 5000 particles. On average there were 3.7 targets detected by the synthetic 
targeting sensor, and 5.0 objects detected by the seeker.  

Two indicators of performance are presented. The first (Table 1) presents the average classification rate 
for the targets using the Bayesian combination procedure, with the classifications determined according to 
the maximum class probability calculated using (12). As baseline performance indicators the targeting 
sensor and seeker sensor classification rates are also presented (for the seeker sensor we treat missed 
detections as wrong classifications). Both the targeting and seeker sensor results assume that the target 
relocations are known (i.e. we correctly associate the detections with the actual targets). We can see that 
the Bayesian approach has been able to maintain the classification rate from the (idealised) targeting 
sensor, where-as the seeker sensor is penalised for the missed detections. Indeed, the Bayesian approach 
has actually been able to improve the classification performance over that of the targeting sensor only. 
This is presumably a result of combining the classification probabilities from the targeting sensor and the 
seeker.  

Targeting sensor only Seeker only Bayesian combination 
72.5% 59.0% 74.6% 

Table 1: Classification rates 

The second set of results (Table 2) gives an indication of the performance in determining target locations. 
In each case the quoted figure is the percentage of detections for which the actual target lay within a circle 
centred on the detection, with radius equal to three times the average sensor measurement error standard 
deviation. The detection locations used in the Bayesian combination results were the means of the 
posterior locations. The performance from the targeting sensor alone is very poor, due to the relocation of 
targets during weapon fly-out. The idealised seeker is penalised for its missed detections, but overall 
performs well since the true associations between measurements and targets have been used.  

Targeting  Seeker Bayesian Bayesian with s.d. 
8.2% 80.9% 52.8% 84.5% 

Table 2: Performance estimating location 

The Bayesian combination algorithm suffers from the fact that only the mean of the posterior distribution 
has been used, rather than the full posterior distribution. Thus, no account is being made of the estimates 
of the uncertainty in target location that are inherent within the posterior distribution. To show the effect 
of this, the percentage of detections for which the actual locations fell within a circle centred on the 
posterior mean, with radius equal to twice the estimated average posterior standard deviation of the 
location, is presented to the far right of Table 2. As can be seen by examining the two right-hand columns, 
taking this uncertainty into account produces much better performance. A factor of two has been used 
around the average standard deviation, rather than the factor of three used earlier, to penalise the 
potentially larger (compared to the sensor measurement errors) estimated standard deviations. Specifically, 
there is a trade-off between correctly estimating the possible variation in the target locations and having 
such a large spread in the posterior distribution locations that the particles fail to pin-point the targets 
efficiently (which would negate the military utility of the algorithm).  

5.0 SUMMARY AND FUTURE WORK 
This paper has successfully developed a Bayesian procedure to enable exploitation of targeting 
information by a weapon seeker. The aim has been to use a targeting sensor to guide a seeker equipped 
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weapon to an area containing high-value relocatable targets. The weapon seeker then needs to engage the 
high value targets, while minimising collateral damage. A Bayesian particle filter based solution has been 
developed. The procedure has been demonstrated successfully on a synthetic problem. Current work is 
applying the approach to more realistic scenarios. These scenarios include:  

• Complicated target motion during weapon fly-out.  

• Use of automated target detection algorithms applied to real data.  

• Use of real data chips for the ID sensor measurements of targets.  

• Use of more appropriate (and realistic) sensor measurement distributions.  

Although, on the face of it, such extensions would be expected to make the problem harder, this is not 
necessarily the case. For example, real targets might actually be more separable than the overlapping 
multivariate Gaussian distributions used in the synthetic example. Furthermore, taking into account more 
sophisticated target motion should improve performance, since it has the effect of constraining the 
possible target relocations. 
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